TDDIO08: Embedded Systems Design

TDTSO07: System Design and Methodology
(Lesson 1)

Contacts
I T Bl e BEm = B B R m R R B s R EEm = B

38:490 36:488 38:485 38:484 38:48038:478 IBAT6 38474 36470 30466 3B:464 3B:460 3IBAS5E 3B:45¢ IB:452 IB:450 3:446 IB:444 38442 38440 3V:4% 3IBA434

2
29
320242

SuU14

SuU13

SuU17 SuU15

SuU18 SuU16
Su12

4
———1 38.3294 320:227

« Soheil Samii (lectures)

— @

3c.4%0
327:232
38485
B |
Skriv| skriv
stud
B.475 B.473)
B:
3B:461F 38
FT R T E
2d 8 o] [
an: 38:434
329:23. 329-238

. Office: Building B 329:220 4/\5%_: -) Hl |
Email: soheil.samii@liu.se — (I
t__// Su10 2 g %
« Xiaopeng Teng (lessons & labs) |
° Office: Building B 329:228 -, ; gl sl 8 # d s| o o o g g g 3 %x

- Email: xiaopeng.teng@liu.se ; : e

Kop/Skriv
327185
82

27191327:19
ai 30485
) Ij

i
Taal
|3|:n'a

3183 FE165 JE187 3E.191 ADT9f

3E 487
18

3E:481
AT7

3E
IEATS

327:186 7170 327:176__ 327:180 _327.182 327:186 327:188 32718971

|

Outline
T T T S B o I L R g SN

= Today
= Organization
= Lab 1 (TDTS07 & TDDIOS8):
= Modeling and Simulation with SystemC
= Lab 2 (TDDIO8) / Lab 3 (TDTS07):
= Design-space Exploration with MPARM
= Next time
= Lab 2 (TDTS07)
= Formal verification with UPPAAL

TI)DIOS = Organization

Lab groups
= Webreg groups A and B

Web page
= https://www.ida.liu.se/~TDDIO8
= (Check for detailed information and links to tutorials

Organization
= 1 lesson (this one)
= 7 two-hour lab sessions

Lab assignments
1. Modeling and simulation with SystemC (4-5 sessions)
2. Design-space exploration with MPARM (2-3 sessions)

https://www.ida.liu.se/~TDDI08

TDTSO7 - Organization
= Lab groups

= Webreg groups A and B

= Web page
= https://www.ida.liu.se/~TDTS07
= Check for detailed information and links to tutorials

= QOrganization
= 2 lessons (including this one)
= 10 two-hour lab sessions

= Lab assignments
1. Modeling and simulation with SystemC (3-4 sessions)
2. Formal verification with UPPAAL (4-5 sessions)
3. Design-space exploration with MPARM (2 sessions)

https://www.ida.liu.se/~TDTS07

o Organization

= Choose a lab partner and sign up in Webreg
= https://www.ida.liu.se/webreq3/TDDI08-2025-1/LAB
= https://www.ida.liu.se/webreg3/TDTS07-2025-1/LAB
= Deadline for the registration: January 27 (TDDIO0S),
January 29 (TDTSO07)
= Register as soon as possible
= Deadline for the labs: March 11 (Both)
= This is the last day for handing in (emailing) lab reports
= After the deadline, your teaching assistant will correct
the remaining lab reports at his convenience
= Lab rules
= https://www.ida.liu.se/labs/eslab/lab rules
= Read them!

https://www.ida.liu.se/webreg3/TDDI08-2025-1/LAB
https://www.ida.liu.se/webreg3/TDTS07-2025-1/LAB
https://www.ida.liu.se/labs/eslab/lab_rules

™

Structure
T T T S B o I L R g SN

Modeling and simulation with SystemC (TDDI08 &

TDTS07)

Formal verification with UPPAAL (TDTS07)
Design-space exploration with MPARM (TDDIO8 &

TDTS07)

Each lab has a tutorial. Read it and be prepared before
you attend the la
https://www.ida.
https://www.ida.

D session.
iu.se/~TDDI08/labs/index.en.shtml

iu.se/~TDTS07/labs/index.en.shtml

https://www.ida.liu.se/~TDDI08/labs/index.en.shtml
https://www.ida.liu.se/~TDTS07/labs/index.en.shtml

Introduction to Lab 1
Modeling and Simulation with SystemC

Lab 1

m Modeling and simulation with System C

Cnformal SpecificationD‘
Constraints ~o

Modeling l<e——| Functional
* | Simulation |

* B
. \ N Formal
» Arch. Selectlor <{System+modeDT:[Verification

System Mapping N

architecture *
| Estlmatloné: Scheduling |<———

not OK Mapped and not OK
@cheduled modey\ Simulation
OK Formal

/ \\Lerification

(Soﬂw. model)—» Simulation <—(Hardw. modeD

4——System Level —»

Simulation
T T T S B o I L R g SN

Based on an executable model of the system

Generate inputs and observe outputs

Permits a quick but shallow evaluation

Good for detecting crude errors

Not good for finding subtle bugs

o sttemC

= Comparable to VHDL and Verilog
= Unified hardware-software design language
= Contains structures for modeling hardware components
and their interaction
= Comes with a simulation kernel
= What do we need to model systems?
= time
= modules
= concurrent processes
= events
= channels
= ports

o sttemC: Time

= Data type sc_time (a C++ class)
= Use like an ordinary basic data type (int, double)
" sc_time tl1 (9, SC_MS);
" sc_time tZ2 = sc_time (5, SC_SEC);
= 1f (tl<t2) cout << tl*3 << endl << t2+t2;
= Many of standard operators are defined for sc_time
= Based on 64-bits unsigned integer values
= The representable time is limited (discrete time)
= Depends on the time resolution
= Default: 1 picosecond

= Can be set by the user through the function
sc_set time resolution

o sttemc: Modules

= Basic building blocks in SystemC
= Contains ports, concurrent processes, internal data
structures, channels, etc.
= Created with the macro SC_MODULE
= Concurrent processes (SC_THREAD Of SC_METHOD)
= Use wait statements to advance time (or event
notification)
= Sensitive to events (sc_event) or value changes in
channels
= Input and output ports to communicate with the
environment

o ExamBIe: Adder

» SUm

Adder Module

#include <systemc.h>

#include <iostream> void print method() {

cout << sc time stamp ()
using std::cout; << i Sum=" <<sum p
using std::endl; << endl;

SC_MODULE (Adder) {

sc_in<int> a p; SC_CTOR (Adder) {
sc_in<int> b p; sum p.initialize(0);
sc_out<int> sum p; SC METHOD (add method) ;
sc_event print ev; sensitive << a p << b p;
SC METHOD (print method) ;
void add method () { dont initialize();
sum p = a p + b p; sensitive << print ev;
print ev.notify(SC ZERO TIME) ; }

} Y

Generator

Generator > sum

Generator Module
T T T S B o I L R g SN

SC_MODULE (Generator)
sc_out<int> a p;
sc_out<int> b p;

void gen thread()
for (;;) A
wait (1, SC SEC);
ap=ap+1;
b p->write(b p->read() + 1);
}
}

SC_CTOR (Generator)
a p.initialize(0);
b p.initialize(0);
SC_THREAD (gen thread) ;

// Definition of an input generator

int sc main(int argc, char *argv([])
sc_set default time unit(l, SC_SEC);
sc_signal<int> a sig, b sig, sum sig; //

Adder adder module (”Adder 17); //
adder module(a sig, b sig, sum sig); //
//

Generator gen (”Generator 17);
gen(a_ sig, b sig);

sc start (30, SC SEC);

return 0;

Test Bench

create channels
create an instance
connect ports to
channels

Simulation Run
T T T S B o I L R g SN

S ./adder.x

SystemC 2.1.v1 —-—-- Dec 22 2014 16:12:32
Copyright (c) 1996-2005 by all Contributors
ALL RIGHTS RESERVED
Sum=0
Sum=2
Sum=4
Sum=6
Sum=8
Sum=10
Sum=12
Sum=14
Sum=16
: Sum=18
10 s: Sum=20
11 s: Sum=22

O 0O J o O b W DN PP O
0 0 O n nh O n nh »n un

SystemC Simulator Kernel
O T e e T e

1. Initialize: each process is executed once; it's possible to
disable this phase for methods.

#include <systemc.h> -
#include <jiostream> void print method()
cout << sc time stamp ()

using std::cout; << " Sum=" <<sum_ p
using std::endl; << endl;

SC_MODULE (Adder)

sc_in<int> a p; SC _CTOR (Adder) {
sc_in<int> b p; sum p.initialize(0);
sc_out<int> sum p; SC METHOD (add method) ;
sc_event print ev; sensitive << a p << b p;
SC METHOD (print method) ;
void add method () { dont initialize();
sum p = a p + b p; sensitive << print ev;

print ev.notify(SC ZERO TIME) ; }
} }i

SystemC Simulator Kernel
O E T " T e e T e

1. Initialize: each process is executed once; it's possible to
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

finclude <systemc.h>

finclude <iostream> void print method() { 0 g SllHF:O
cout << sc time stamp ()

using std::cout; << ":Sum=" <<sum p

using std::endl; << endl;

}
SC_MODULE (Adder) {

sc_in<int> a p; SC_CTOR (Adder) {
sc_in<int> b p; sum p.initialize (0);
sc_out<int> sum p; SC METHOD (add method) ;
sc_event print ev; sensitive << a p << b p;
SC METHOD (print method) ;
void add method() { dont initialize();
sum p = a p + b p; sensitive << print ev;

print ev.notify(SC ZERO TIME) ; }
} bi

SystemC Simulator Kernel
O E T " T e e T e

. Initialize: each process is executed once; it's possible to
disable this phase for methods.

. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).
. Repeat Step 2 until there are no more processes to run.

. Update: values assigned to channels in the previous
evaluation cycle are updated.

SystemC Simulator Kernel
O w7 " T e e T e

1. Initialize: each process is executed once; it's possible to
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

4. Update: values assigned to channels in the previous
evaluation cycle are updated.

5. Steps 2—4 are a delta-cycle; if Step 2 or 3 resulted in delta
event notifications (e.notify(0) or wait(0)), go to Step 2
without advancing the simulation time.

void add method() {
sum p = ap + b p;
print ev.notify (SC ZERO TIME) ;

J

SystemC Simulator Kernel
O T e e T e

1. Initialize: each process is executed once; it's possible to disable this phase
for methods.

2. Evaluate: select a ready-to-run process and execute or resume it; immediate
notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

4. Update: values assigned to channels in the previous evaluation cycle are
updated.

5. Steps 2—4 are a delta-cycle; if Step 2 or 3 resulted in delta event notifications
(e.notify(0) or wait(0)), go to Step 2 without advancing the simulation time.

6. Advance to the next time with pending events.
/. Determine processes ready to run and go to Step 2.
void gen thread() { = Concurrent processes (SC_THREAD Of SC_METHOD)
for (::) | = Use wait statements to advance time (or event
wait (1, SC SEC); notification)
ap=ap+ 1;

b p->write(b p->read() + 1);
]

_ §Xstemc: Delta-cxcle

// Inside a process

sc_signal<int> sig int;

// Assume current value of sig int is O
sig int.write(l);

int value = sig int.read();

cout << value << endl; ~——-—------- > 0
wait (SC_ZERO TIME) ;

value = sig 1int.read();

cout << value << endl; -———-=------- > 1

o Run the ExamBIe

Copy the example to your home directory

= [courses/TDTSO07/tutorials/systemc/adder

= adder.cc (implements the system)

= Makefile (helps you compile and build the program)
Type make in the command line

= Creates an executable adder.x
Type ./adder.x to run the executable

Study the source code together with the tutorial

o Lab Assignment

= Study the lab material linked from the web pages

= There you will find the lab assignment
= Design and implement a traffic light controller

= For further details
= SystemC Language Reference Manual
= http://accellera.org

Introductionto Lab 2 / Lab 3
Design-space Exploration with MPARM

Lab 2

m Design space exploration with an MPARM simulator.

Cnformal SpecificatiorD‘
Constraints ~o

Modeling |<—— Functional
. Simulation

: ! NS Formal
» Arch. Selectlon <—<Systerr; modeD—T Verification
~

System .
architecture Map*plng y
| Eshma’uonﬁ Scheduling |[<———

Y

not OK Mapped and not OK
Qcheduled model Simulation
OK Formal
Verification

4¢——System Level —»

(Soﬂw. model)—» Simulation <—<Hardw. modeD

Outline
T T T S B o I L R e S

« System-design flow

« Hardware and software

 Design-space exploration

sttem-design Flow

Informal specification,
constraints

Functlonal
| Architecture \ simulation
selection ‘_(System model \
\
Y .

Mapping -

v

'

Estimation =% Scheduling _-—
not ok ¢~ Mapped and not ok

cheduled model

Hardware and
Software
Implementation

Y
Testing ‘_(Prototype)
‘ok

Fabrication

not ok

MPARM: Motivation

= Cycle-accurate simulation of the system at hand

= Provides various statistics such as the number of
clock cycles, bus utilization, cache efficiency, and
energy/power consumption of the components

= Helps to obtain a correct and efficient product

MPSoC Architecture

o G
I & 3

Private | Private emaphor
Memory | Memory | Memor Device Memor

MPARM: Hardware

ARMY7 processors (up to eight)

Variable frequency (dynamic and static)
Instruction and data caches

Scratchpad memory

Private memory

Shared memory

Communication bus

Read more in:

= [courses/TDTS07/sw/mparm/MPARM/doc
= simulator_statistics.txt

MPARM: Software

= Cross-compiler toolchain for building software

= No operating system
= Small set of functions (such as WAIT and SIGNAL)

o MPARM: Usage

= mpsim.X -C2 — run on two processors, collecting
default statistics

= mpsim.X -C2 -w — run on two processors, collecting
power/energy statistics

= mpsim.x -c1 --is=9 --ds=10 — run on one processor
with instruction cache of 512 bytes and data cache of
1024 bytes

= mpsim.x -c2 -F0,2 -F1,1 -F3,3 — run on two
processors operating at 100 MHz and 200 MHz and
the bus operating at 66 MHz

= 200 MHz is the "default” frequency
= mpsim.x -h — show other options
= Simulation results are in the file stats. txt

De_sign-sEace ExBIoration

= Platform optimization

= Select t
= Select t
= Select t
= Select t

ne number of processors
ne speed of each processor
ne type, associativity, and size of the cache

ne bus type

= Application optimization
= Select the interprocessor communication style (shared
memory or distributed message passing)
= Select the best mapping and schedule

Energy/Speed Tradeoff

CPU model
0.75V, 60mW
150MHz
PR 1.3V, 450mW
P 600MHz
- R R 1.6V, 900mW
S
H RUN 800MHz
10us 1.5ms
10us 140ms
90us
IDLE H SLEEP

40mW 160uW

Frequency Selection: ARM Core Energx

2.8
2.6
2.4
2.2
2.0t
1.8}
1.6}
1.4}
1.2}
1.0} -
0.8} i
0.6 | - - - -

Energy [mJ]

Freq. divider

Frequency Selection: Total Energx

11 F

10.5 F

=
o
T

Energy [mJ]

©
o
T

Freq. divider

Instructlon Cache Size: Execution Time
E = e B R B R m =R R s m R mEm e N

1e+08 l l | |
9.5e+07
9e+07
8.5e+07

A 8e+07
7.5e+07
7e+07
6.5e+07
6e+07
5.5e+07

5e+07 ' ' ' '
9 10 11 12 13 14

t [cycles]

log2(CacheSize)

Instruction Ca_cl_1e Size: Total Enerﬂx

12.5 T T T T
12.0 |
11.5 |

11.0 |
10.5 |
10.0 f

Energy [mJ]

9.50
9.00

8.50

29=512 bytes log2(CacheSize) 214=16 kbytes

o Assignment 2

= Given a GSM codec
= Running on one ARM7/ processor
= Variables
= Cache parameters
= Processor frequency
= Using MPARM, find a hardware configuration that
minimizes the energy of the system

Interprocessor Data Communication
w0 oa N e S T e

CPU,
a=1 —
How?
CPU,
iaurint a; - <=

BUS

/\ _ Shared Memorx

Shared Mem

A BUS

a§ - Synchronization

o anchronization

With semaphores /\
CPU, Semaphore
a=1 —| k=>[_sem_ a

signal(sem_a)

CPU, Shared Mem
wait(sem_a) <—| [<— a
a:_2

a=2 \ print a; BUS

*

Synchronization Internals 512

CPU, Semaphore
a=1 | ==l _sem_a
{Sem_azl _algnal(sem_a)/% /y
N
y/
CPU, / Shared Mem
. 7
[Nhlle Sl wait(sem_a) o> <= a
(sem_a==0) | g=2 -
rint a;
il BUS

*

Synchronization Internals szz

= Disadvantages of polling
= Results in higher power consumption
= Larger execution time of the application
= Blocking important communication on the bus

Distril_:u_ted Message Passing

Direct CPU-CPU communication with distributed semaphores
Each CPU has its own scratchpad
= Smaller and faster than a RAM
= Smaller energy consumption than a cache
= Put frequently used variables on the scratchpad
= Cache controlled by hardware
= Scratchpad controlled by software
Semaphores allocated on scratchpads
No polling

Distribute:d_Messa e Passing (1

X

<>

CPU,

a=1 Shared Mem
signal(sem_a)

<> d

CPU,
wait(sem_a) |——
a=2

print a;

!

sem_a [-—>|l| BUS

——ﬂ

Distribute:d_Messa e Passing (2

X

a:1 <

CPU,(prod)

a=1
signal(sem_a)

CPU, (cons)
wait(sem_a) |——

print a;

!

sem_a |<—| | BUS

a=1 ri i

o Assignment 2

= Given two implementations of the GSM codec
= Shared memory
= Distributed message passing

= Simulate and compare these two approaches
= Energy
= Runtime

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

