
1 of 14

TDDI08: Embedded Systems Design

TDTS07: System Design and Methodology

(Lesson 1)

2 of 142

Contacts

• Soheil Samii (lectures)
• Office: Building B 329:220
• Email: soheil.samii@liu.se

• Xiaopeng Teng (lessons & labs)
• Office: Building B 329:228
• Email: xiaopeng.teng@liu.se

3 of 143

Outline

▪ Today
▪ Organization

▪ Lab 1 (TDTS07 & TDDI08):
▪ Modeling and Simulation with SystemC

▪ Lab 2 (TDDI08) / Lab 3 (TDTS07):
▪ Design-space Exploration with MPARM

▪ Next time
▪ Lab 2 (TDTS07)

▪ Formal verification with UPPAAL

4 of 144

TDDI08 - Organization

▪ Lab groups
▪ Webreg groups A and B

▪ Web page
▪ https://www.ida.liu.se/~TDDI08
▪ Check for detailed information and links to tutorials

▪ Organization
▪ 1 lesson (this one)
▪ 7 two-hour lab sessions

▪ Lab assignments
1. Modeling and simulation with SystemC (4-5 sessions)
2. Design-space exploration with MPARM (2-3 sessions)

https://www.ida.liu.se/~TDDI08

5 of 145

TDTS07 - Organization

▪ Lab groups

▪ Webreg groups A and B

▪ Web page
▪ https://www.ida.liu.se/~TDTS07

▪ Check for detailed information and links to tutorials

▪ Organization
▪ 2 lessons (including this one)

▪ 10 two-hour lab sessions

▪ Lab assignments
1. Modeling and simulation with SystemC (3-4 sessions)
2. Formal verification with UPPAAL (4-5 sessions)
3. Design-space exploration with MPARM (2 sessions)

https://www.ida.liu.se/~TDTS07

6 of 146

Organization

▪ Choose a lab partner and sign up in Webreg

▪ https://www.ida.liu.se/webreg3/TDDI08-2025-1/LAB
▪ https://www.ida.liu.se/webreg3/TDTS07-2025-1/LAB
▪ Deadline for the registration: January 27 (TDDI08),

January 29 (TDTS07)
▪ Register as soon as possible

▪ Deadline for the labs: March 11 (Both)
▪ This is the last day for handing in (emailing) lab reports

▪ After the deadline, your teaching assistant will correct
the remaining lab reports at his convenience

▪ Lab rules
▪ https://www.ida.liu.se/labs/eslab/lab_rules
▪ Read them!

https://www.ida.liu.se/webreg3/TDDI08-2025-1/LAB
https://www.ida.liu.se/webreg3/TDTS07-2025-1/LAB
https://www.ida.liu.se/labs/eslab/lab_rules

7 of 147

Structure

1. Modeling and simulation with SystemC (TDDI08 &
TDTS07)

2. Formal verification with UPPAAL (TDTS07)

3. Design-space exploration with MPARM (TDDI08 &
TDTS07)

▪ Each lab has a tutorial. Read it and be prepared before
you attend the lab session.

▪ https://www.ida.liu.se/~TDDI08/labs/index.en.shtml
▪ https://www.ida.liu.se/~TDTS07/labs/index.en.shtml

https://www.ida.liu.se/~TDDI08/labs/index.en.shtml
https://www.ida.liu.se/~TDTS07/labs/index.en.shtml

8 of 148

Introduction to Lab 1

Modeling and Simulation with SystemC

9 of 149

Lab 1

10 of 1410

Simulation

▪ Based on an executable model of the system

▪ Generate inputs and observe outputs

▪ Permits a quick but shallow evaluation

▪ Good for detecting crude errors

▪ Not good for finding subtle bugs

11 of 1411

SystemC

▪ Comparable to VHDL and Verilog
▪ Unified hardware-software design language

▪ Contains structures for modeling hardware components
and their interaction

▪ Comes with a simulation kernel
▪ What do we need to model systems?

▪ time
▪ modules
▪ concurrent processes
▪ events
▪ channels
▪ ports

12 of 1412

SystemC: Time

▪ Data type sc_time (a C++ class)
▪ Use like an ordinary basic data type (int, double)

▪ sc_time t1(9, SC_MS);

▪ sc_time t2 = sc_time(5, SC_SEC);

▪ if (t1<t2) cout << t1*3 << endl << t2+t2;

▪ Many of standard operators are defined for sc_time

▪ Based on 64-bits unsigned integer values
▪ The representable time is limited (discrete time)
▪ Depends on the time resolution

▪ Default: 1 picosecond

▪ Can be set by the user through the function
sc_set_time_resolution

13 of 1413

SystemC: Modules

▪ Basic building blocks in SystemC

▪ Contains ports, concurrent processes, internal data
structures, channels, etc.

▪ Created with the macro SC_MODULE
▪ Concurrent processes (SC_THREAD or SC_METHOD)

▪ Use wait statements to advance time (or event

notification)
▪ Sensitive to events (sc_event) or value changes in

channels

▪ Input and output ports to communicate with the
environment

14 of 1414

Example: Adder

Adder
a

b

sum

15 of 1415

Adder Module

#include <systemc.h>

#include <iostream>

using std::cout;

using std::endl;

SC_MODULE(Adder) {

sc_in<int> a_p;

sc_in<int> b_p;

sc_out<int> sum_p;

sc_event print_ev;

void add_method() {

sum_p = a_p + b_p;

print_ev.notify(SC_ZERO_TIME);

}

…

…

void print_method() {

cout << sc_time_stamp()

<< ”:Sum=” <<sum_p

<< endl;

}

SC_CTOR(Adder) {

sum_p.initialize(0);

SC_METHOD(add_method);

sensitive << a_p << b_p;

SC_METHOD(print_method);

dont_initialize();

sensitive << print_ev;

}

};

16 of 1416

Generator

Adder

a

b
sumGenerator

17 of 1417

Generator Module

SC_MODULE(Generator) {

sc_out<int> a_p;

sc_out<int> b_p;

void gen_thread() {

for (;;) {

wait(1, SC_SEC);

a_p = a_p + 1;

b_p->write(b_p->read() + 1);

}

}

SC_CTOR(Generator) {

a_p.initialize(0);

b_p.initialize(0);

SC_THREAD(gen_thread);

}

};

18 of 1418

Test Bench

// Definition of an input generator

int sc_main(int argc, char *argv[]) {

sc_set_default_time_unit(1, SC_SEC);

sc_signal<int> a_sig, b_sig, sum_sig; // create channels

Adder adder_module(”Adder_1”); // create an instance

adder_module(a_sig, b_sig, sum_sig); // connect ports to

// channels

Generator gen(”Generator_1”);

gen(a_sig, b_sig);

sc_start(30, SC_SEC);

return 0;

}

19 of 1419

Simulation Run

$./adder.x

SystemC 2.1.v1 --- Dec 22 2014 16:12:32

Copyright (c) 1996-2005 by all Contributors

ALL RIGHTS RESERVED

0 s: Sum=0

1 s: Sum=2

2 s: Sum=4

3 s: Sum=6

4 s: Sum=8

5 s: Sum=10

6 s: Sum=12

7 s: Sum=14

8 s: Sum=16

9 s: Sum=18

10 s: Sum=20

11 s: Sum=22

…

20 of 1420

SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to
disable this phase for methods.

21 of 1421

SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

22 of 1422

SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

4. Update: values assigned to channels in the previous
evaluation cycle are updated.

23 of 1423

SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

4. Update: values assigned to channels in the previous
evaluation cycle are updated.

5. Steps 2–4 are a delta-cycle; if Step 2 or 3 resulted in delta
event notifications (e.notify(0) or wait(0)), go to Step 2
without advancing the simulation time.

24 of 1424

SystemC: Simulator Kernel

1. Initialize: each process is executed once; it’s possible to disable this phase
for methods.

2. Evaluate: select a ready-to-run process and execute or resume it; immediate
notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

4. Update: values assigned to channels in the previous evaluation cycle are
updated.

5. Steps 2–4 are a delta-cycle; if Step 2 or 3 resulted in delta event notifications
(e.notify(0) or wait(0)), go to Step 2 without advancing the simulation time.

6. Advance to the next time with pending events.
7. Determine processes ready to run and go to Step 2.

25 of 1425

SystemC: Delta-cycle

// Inside a process

sc_signal<int> sig_int;

// Assume current value of sig_int is 0

sig_int.write(1);

int value = sig_int.read();

cout << value << endl;

wait(SC_ZERO_TIME);

value = sig_int.read();

cout << value << endl;

0

1

26 of 1426

Run the Example

▪ Copy the example to your home directory
▪ /courses/TDTS07/tutorials/systemc/adder
▪ adder.cc (implements the system)
▪ Makefile (helps you compile and build the program)

▪ Type make in the command line
▪ Creates an executable adder.x

▪ Type ./adder.x to run the executable

▪ Study the source code together with the tutorial

27 of 1427

Lab Assignment

▪ Study the lab material linked from the web pages

▪ There you will find the lab assignment

▪ Design and implement a traffic light controller

▪ For further details
▪ SystemC Language Reference Manual
▪ http://accellera.org

28 of 14

Introduction to Lab 2 / Lab 3

Design-space Exploration with MPARM

29 of 14

Lab 2

30 of 1430

Outline

• System-design flow

• Hardware and software

• Design-space exploration

31 of 1431

System-design Flow

Informal specification,

constraints

Modeling

System model

Mapped and

scheduled model

Estimation

System

architecture

Architecture

selection

Hardware and

Software

Implementation

Prototype

Fabrication

ok

Testing

Functional

simulation

not oknot ok

Mapping

Scheduling

not ok

32 of 1432

MPARM: Motivation

▪ Cycle-accurate simulation of the system at hand

▪ Provides various statistics such as the number of
clock cycles, bus utilization, cache efficiency, and
energy/power consumption of the components

▪ Helps to obtain a correct and efficient product

33 of 1433

MPSoC Architecture

Bus

ARM ARM ARM
Interrupt

Device

Private

Memory

Private

Memory

Private

Memory

Semaphore

Device

Shared

Memory

CACHE CACHE CACHE

34 of 1434

MPARM: Hardware

▪ ARM7 processors (up to eight)
▪ Variable frequency (dynamic and static)
▪ Instruction and data caches
▪ Scratchpad memory
▪ Private memory
▪ Shared memory
▪ Communication bus
▪ Read more in:

▪ /courses/TDTS07/sw/mparm/MPARM/doc
▪ simulator_statistics.txt

35 of 1435

MPARM: Software

▪ Cross-compiler toolchain for building software

▪ No operating system

▪ Small set of functions (such as WAIT and SIGNAL)

36 of 1436

MPARM: Usage

▪ mpsim.x -c2 — run on two processors, collecting
default statistics

▪ mpsim.x -c2 -w — run on two processors, collecting
power/energy statistics

▪ mpsim.x -c1 --is=9 --ds=10 — run on one processor
with instruction cache of 512 bytes and data cache of
1024 bytes

▪ mpsim.x -c2 -F0,2 -F1,1 -F3,3 — run on two
processors operating at 100 MHz and 200 MHz and
the bus operating at 66 MHz
▪ 200 MHz is the ”default” frequency

▪ mpsim.x -h — show other options
▪ Simulation results are in the file stats.txt

37 of 1437

Design-space Exploration

▪ Platform optimization
▪ Select the number of processors
▪ Select the speed of each processor
▪ Select the type, associativity, and size of the cache
▪ Select the bus type

▪ Application optimization

▪ Select the interprocessor communication style (shared
memory or distributed message passing)

▪ Select the best mapping and schedule

38 of 1438

Energy/Speed Tradeoff

RUN
RUN

RUN
RUN

IDLE SLEEP

RUN

0.75V, 60mW

150MHz

1.3V, 450mW

600MHz

1.6V, 900mW

800MHz

90s

40mW 160W

10s

10s 140ms

1.5ms

160s

CPU model

39 of 1439

Frequency Selection: ARM Core Energy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

1 1.5 2 2.5 3 3.5 4

E
n
e
rg

y
 [

m
J
]

Freq. divider

40 of 1440

Frequency Selection: Total Energy

8.5

9.0

9.5

10

10.5

11

1 1.5 2 2.5 3 3.5 4

E
n
e
rg

y
 [

m
J
]

Freq. divider

41 of 1441

Instruction Cache Size: Execution Time

t
[c

y
c
le

s
]

5e+07

5.5e+07

6e+07

6.5e+07

7e+07

7.5e+07

8e+07

8.5e+07

9e+07

9.5e+07

1e+08

9 10 11 12 13 14

log2(CacheSize)

42 of 1442

Instruction Cache Size: Total Energy

log2(CacheSize)

8.50

9.00

9.50

10.0

10.5

11.0

11.5

12.0

12.5

9 10 11 12 13 14

E
n
e

rg
y
 [

m
J
]

29=512 bytes 214=16 kbytes

43 of 1443

▪ Given a GSM codec
▪ Running on one ARM7 processor
▪ Variables

▪ Cache parameters
▪ Processor frequency

▪ Using MPARM, find a hardware configuration that
minimizes the energy of the system

Assignment 2

44 of 1444

Interprocessor Data Communication

CPU1

CPU2

...

a=1

...

...

print a;

...

BUS

How?

45 of 1445

Shared Memory

CPU1

CPU2

...

a=1

...

print a;

BUS

Shared Mem

a

a=2

a=? Synchronization

46 of 1446

Synchronization

CPU1

CPU2

a=1

signal(sem_a)

print a;

Shared Mem

a
a=2

Semaphore

sem_a

wait(sem_a)

a=2

With semaphores

BUS

47 of 1447

Synchronization Internals (1)

CPU1

CPU2

a=1

signal(sem_a)

print a;

Shared Mem

a
a=2

Semaphore

sem_a

while

(sem_a==0)
wait(sem_a)

sem_a=1

BUS

48 of 1448

Synchronization Internals (2)

▪ Disadvantages of polling
▪ Results in higher power consumption
▪ Larger execution time of the application
▪ Blocking important communication on the bus

49 of 1449

Distributed Message Passing

▪ Direct CPU-CPU communication with distributed semaphores
▪ Each CPU has its own scratchpad

▪ Smaller and faster than a RAM
▪ Smaller energy consumption than a cache
▪ Put frequently used variables on the scratchpad
▪ Cache controlled by hardware
▪ Scratchpad controlled by software

▪ Semaphores allocated on scratchpads
▪ No polling

50 of 1450

Distributed Message Passing (1)

CPU1

a=1

signal(sem_a)

BUS

Shared Mem

a

CPU2

print a;

a=2
wait(sem_a)

sem_a

51 of 1451

Distributed Message Passing (2)

CPU1(prod)

signal(sem_a)

BUS

CPU2 (cons)

print a;

wait(sem_a)

sem_a

a=1

a=1

a=1

52 of 1452

Assignment 2

▪ Given two implementations of the GSM codec
▪ Shared memory
▪ Distributed message passing

▪ Simulate and compare these two approaches
▪ Energy
▪ Runtime

53 of 1453

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

