TDDIO08: Embedded Systems Design

TDTSO07: System Design and Methodology
(Lesson 1)
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Outline
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= Today
= Organization
= Lab 1 (TDTS07 & TDDIOS8):
= Modeling and Simulation with SystemC
= Lab 2 (TDDIO8) / Lab 3 (TDTS07):
= Design-space Exploration with MPARM
= Next time
= Lab 2 (TDTS07)
= Formal verification with UPPAAL




_TI_)DIOS = Organization

Lab groups
= Webreg groups A and B

Web page
= https://www.ida.liu.se/~TDDIO8
= (Check for detailed information and links to tutorials

Organization
= 1 lesson (this one)
= 7 two-hour lab sessions

Lab assignments
1. Modeling and simulation with SystemC (4-5 sessions)
2. Design-space exploration with MPARM (2-3 sessions)



https://www.ida.liu.se/~TDDI08

TDTSO7 - Organization
= Lab groups

= Webreg groups A and B

= Web page
= https://www.ida.liu.se/~TDTS07
= Check for detailed information and links to tutorials

= QOrganization
= 2 lessons (including this one)
= 10 two-hour lab sessions

= Lab assignments
1. Modeling and simulation with SystemC (3-4 sessions)
2. Formal verification with UPPAAL (4-5 sessions)
3. Design-space exploration with MPARM (2 sessions)



https://www.ida.liu.se/~TDTS07

o Organization

= Choose a lab partner and sign up in Webreg
= https://www.ida.liu.se/webreq3/TDDI08-2025-1/LAB
= https://www.ida.liu.se/webreg3/TDTS07-2025-1/LAB
= Deadline for the registration: January 27 (TDDIO0S),
January 29 (TDTSO07)
= Register as soon as possible
= Deadline for the labs: March 11 (Both)
= This is the last day for handing in (emailing) lab reports
= After the deadline, your teaching assistant will correct
the remaining lab reports at his convenience
= Lab rules
= https://www.ida.liu.se/labs/eslab/lab rules
= Read them!



https://www.ida.liu.se/webreg3/TDDI08-2025-1/LAB
https://www.ida.liu.se/webreg3/TDTS07-2025-1/LAB
https://www.ida.liu.se/labs/eslab/lab_rules
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Structure
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Modeling and simulation with SystemC (TDDI08 &

TDTS07)

Formal verification with UPPAAL (TDTS07)
Design-space exploration with MPARM (TDDIO8 &

TDTS07)

Each lab has a tutorial. Read it and be prepared before
you attend the la
https://www.ida.
https://www.ida.

D session.
iu.se/~TDDI08/labs/index.en.shtml

iu.se/~TDTS07/labs/index.en.shtml



https://www.ida.liu.se/~TDDI08/labs/index.en.shtml
https://www.ida.liu.se/~TDTS07/labs/index.en.shtml

Introduction to Lab 1
Modeling and Simulation with SystemC




Lab 1

m Modeling and simulation with System C
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Simulation
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Based on an executable model of the system

Generate inputs and observe outputs

Permits a quick but shallow evaluation

Good for detecting crude errors

Not good for finding subtle bugs




o sttemC

= Comparable to VHDL and Verilog
= Unified hardware-software design language
= Contains structures for modeling hardware components
and their interaction
= Comes with a simulation kernel
= What do we need to model systems?
= time
= modules
= concurrent processes
= events
= channels
= ports




o sttemC: Time

= Data type sc_time (a C++ class)
= Use like an ordinary basic data type (int, double)
" sc_time tl1 (9, SC_MS);
" sc_time tZ2 = sc_time (5, SC_SEC);
= 1f (tl<t2) cout << tl*3 << endl << t2+t2;
= Many of standard operators are defined for sc_time
= Based on 64-bits unsigned integer values
= The representable time is limited (discrete time)
= Depends on the time resolution
= Default: 1 picosecond

= Can be set by the user through the function
sc_set time resolution




o sttemc: Modules

= Basic building blocks in SystemC
= Contains ports, concurrent processes, internal data
structures, channels, etc.
= Created with the macro SC_MODULE
= Concurrent processes (SC_THREAD Of SC_METHOD)
= Use wait statements to advance time (or event
notification)
= Sensitive to events (sc_event) or value changes in
channels
= Input and output ports to communicate with the
environment




o ExamBIe: Adder

» SUm




Adder Module

#include <systemc.h>

#include <iostream> void print method() {

cout << sc time stamp ()
using std::cout; << i Sum=" <<sum p
using std::endl; << endl;

SC_MODULE (Adder) {

sc_in<int> a p; SC_CTOR (Adder) {
sc_in<int> b p; sum p.initialize(0);
sc_out<int> sum p; SC METHOD (add method) ;
sc_event print ev; sensitive << a p << b p;
SC METHOD (print method) ;
void add method () { dont initialize();
sum p = a p + b p; sensitive << print ev;
print ev.notify(SC ZERO TIME) ; }

} Y




Generator

Generator > sum




Generator Module
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SC_MODULE (Generator)
sc_out<int> a p;
sc_out<int> b p;

void gen thread()
for (;;) A
wait (1, SC SEC);
ap=ap+1;
b p->write(b p->read() + 1);
}
}

SC_CTOR (Generator)
a p.initialize(0);
b p.initialize(0);
SC_THREAD (gen thread) ;




// Definition of an input generator

int sc main(int argc, char *argv([])
sc_set default time unit(l, SC_SEC);
sc_signal<int> a sig, b sig, sum sig; //

Adder adder module (”Adder 17); //
adder module(a sig, b sig, sum sig); //
//

Generator gen (”Generator 17);
gen(a_ sig, b sig);

sc start (30, SC SEC);

return 0;

Test Bench

create channels
create an instance
connect ports to
channels




Simulation Run
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S ./adder.x

SystemC 2.1.v1 —-—-- Dec 22 2014 16:12:32
Copyright (c) 1996-2005 by all Contributors
ALL RIGHTS RESERVED
Sum=0
Sum=2
Sum=4
Sum=6
Sum=8
Sum=10
Sum=12
Sum=14
Sum=16
: Sum=18
10 s: Sum=20
11 s: Sum=22
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SystemC Simulator Kernel
O T e e T e

1. Initialize: each process is executed once; it's possible to
disable this phase for methods.

#include <systemc.h> -
#include <jiostream> void print method()
cout << sc time stamp ()

using std::cout; << " Sum=" <<sum_ p
using std::endl; << endl;

SC_MODULE (Adder)

sc_in<int> a p; SC _CTOR (Adder) {
sc_in<int> b p; sum p.initialize(0);
sc_out<int> sum p; SC METHOD (add method) ;
sc_event print ev; sensitive << a p << b p;
SC METHOD (print method) ;
void add method () { dont initialize();
sum p = a p + b p; sensitive << print ev;

print ev.notify(SC ZERO TIME) ; }
} }i




SystemC Simulator Kernel
O E T " T e e T e

1. Initialize: each process is executed once; it's possible to
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

finclude <systemc.h>

finclude <iostream> void print method() { 0 g SllHF:O
cout << sc time stamp ()

using std::cout; << ":Sum=" <<sum p

using std::endl; << endl;

}
SC_MODULE (Adder) {

sc_in<int> a p; SC_CTOR (Adder) {
sc_in<int> b p; sum p.initialize (0);
sc_out<int> sum p; SC METHOD (add method) ;
sc_event print ev; sensitive << a p << b p;
SC METHOD (print method) ;
void add method() { dont initialize();
sum p = a p + b p; sensitive << print ev;

print ev.notify(SC ZERO TIME) ; }
} bi




SystemC Simulator Kernel
O E T " T e e T e

. Initialize: each process is executed once; it's possible to
disable this phase for methods.

. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).
. Repeat Step 2 until there are no more processes to run.

. Update: values assigned to channels in the previous
evaluation cycle are updated.




SystemC Simulator Kernel
O w7 " T e e T e

1. Initialize: each process is executed once; it's possible to
disable this phase for methods.

2. Evaluate: select a ready-to-run process and execute or
resume it; immediate notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

4. Update: values assigned to channels in the previous
evaluation cycle are updated.

5. Steps 2—4 are a delta-cycle; if Step 2 or 3 resulted in delta
event notifications (e.notify(0) or wait(0)), go to Step 2
without advancing the simulation time.

void add method() {
sum p = ap + b p;
print ev.notify (SC ZERO TIME) ;

J




SystemC Simulator Kernel
O T e e T e

1. Initialize: each process is executed once; it's possible to disable this phase
for methods.

2. Evaluate: select a ready-to-run process and execute or resume it; immediate
notification may happen (e.notify()).

3. Repeat Step 2 until there are no more processes to run.

4. Update: values assigned to channels in the previous evaluation cycle are
updated.

5. Steps 2—4 are a delta-cycle; if Step 2 or 3 resulted in delta event notifications
(e.notify(0) or wait(0)), go to Step 2 without advancing the simulation time.

6. Advance to the next time with pending events.
/. Determine processes ready to run and go to Step 2.
void gen thread() { = Concurrent processes (SC_THREAD Of SC_METHOD)
for (::) | = Use wait statements to advance time (or event
wait (1, SC SEC); notification)
ap=ap+ 1;

b p->write(b p->read() + 1);
]




_ §Xstemc: Delta-cxcle

// Inside a process

sc_signal<int> sig int;

// Assume current value of sig int is O
sig int.write(l);

int value = sig int.read();

cout << value << endl; ~——-—------- > 0
wait (SC_ZERO TIME) ;

value = sig 1int.read();

cout << value << endl; -———-=------- > 1




o Run the ExamBIe

Copy the example to your home directory

= [courses/TDTSO07/tutorials/systemc/adder

= adder.cc (implements the system)

= Makefile (helps you compile and build the program)
Type make in the command line

= Creates an executable adder.x
Type ./adder.x to run the executable

Study the source code together with the tutorial




o Lab Assignment

= Study the lab material linked from the web pages

=  There you will find the lab assignment
= Design and implement a traffic light controller

= For further details
= SystemC Language Reference Manual
= http://accellera.org




Introductionto Lab 2 / Lab 3
Design-space Exploration with MPARM




Lab 2

m Design space exploration with an MPARM simulator.

Cnformal SpecificatiorD‘
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. Simulation

: ! NS Formal
» Arch. Selectlon <—<Systerr; modeD—T Verification
~

System .
architecture Map*plng y
| Eshma’uonﬁ Scheduling |[<———

Y

not OK Mapped and not OK
Qcheduled model Simulation
OK Formal
Verification

4¢——System Level —»

(Soﬂw. model)—» Simulation <—<Hardw. modeD




Outline
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« System-design flow

« Hardware and software

 Design-space exploration




sttem-design Flow
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MPARM: Motivation

= Cycle-accurate simulation of the system at hand

= Provides various statistics such as the number of
clock cycles, bus utilization, cache efficiency, and
energy/power consumption of the components

= Helps to obtain a correct and efficient product




MPSoC Architecture

o G
I & 3

Private | Private emaphor
Memory | Memory | Memor Device Memor




MPARM: Hardware

ARMY7 processors (up to eight)

Variable frequency (dynamic and static)
Instruction and data caches

Scratchpad memory

Private memory

Shared memory

Communication bus

Read more in:

= [courses/TDTS07/sw/mparm/MPARM/doc
= simulator_statistics.txt




MPARM: Software

= Cross-compiler toolchain for building software

= No operating system
= Small set of functions (such as WAIT and SIGNAL)




o MPARM: Usage

= mpsim.X -C2 — run on two processors, collecting
default statistics

= mpsim.X -C2 -w — run on two processors, collecting
power/energy statistics

= mpsim.x -c1 --is=9 --ds=10 — run on one processor
with instruction cache of 512 bytes and data cache of
1024 bytes

= mpsim.x -c2 -F0,2 -F1,1 -F3,3 — run on two
processors operating at 100 MHz and 200 MHz and
the bus operating at 66 MHz

= 200 MHz is the "default” frequency
= mpsim.x -h — show other options
= Simulation results are in the file stats. txt




De_sign-sEace ExBIoration

= Platform optimization

= Select t
= Select t
= Select t
= Select t

ne number of processors
ne speed of each processor
ne type, associativity, and size of the cache

ne bus type

= Application optimization
= Select the interprocessor communication style (shared
memory or distributed message passing)
= Select the best mapping and schedule




Energy/Speed Tradeoff

CPU model
0.75V, 60mW
150MHz
PR 1.3V, 450mW
P 600MHz
- R R 1.6V, 900mW
S
H RUN 800MHz
10us 1.5ms
10us  140ms
90us
IDLE H SLEEP

40mW 160uW




Frequency Selection: ARM Core Energx
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Frequency Selection: Total Energx
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Instructlon Cache Size: Execution Time
E = e B R B R m =R R s m R mEm e N
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Instruction Ca_cl_1e Size: Total Enerﬂx

12.5 T T T T
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o Assignment 2

= Given a GSM codec
= Running on one ARM7/ processor
= Variables
= Cache parameters
= Processor frequency
= Using MPARM, find a hardware configuration that
minimizes the energy of the system




Interprocessor Data Communication
w0 oa N e S T e

CPU,
a=1 —
How?
CPU,
iaurint a; - <=

BUS




/\ _ Shared Memorx

Shared Mem

A BUS

a§ - Synchronization




o anchronization

With semaphores /\
CPU, Semaphore
a=1 —| k=>[ _sem_ a

signal(sem_a)

CPU, Shared Mem
wait(sem_a) <—| [<— a
a:_2

a=2 \ print a; BUS

*




Synchronization Internals 512

CPU, Semaphore
a=1 | ==l _sem_a
{Sem_azl _algnal(sem_a)/% /y
N
y/
CPU, / Shared Mem
. 7
[Nhlle Sl wait(sem_a) o> <= a
(sem_a==0) | g=2 -
rint a;
il BUS

*




Synchronization Internals szz

= Disadvantages of polling
= Results in higher power consumption
= Larger execution time of the application
= Blocking important communication on the bus




Distril_:u_ted Message Passing

Direct CPU-CPU communication with distributed semaphores
Each CPU has its own scratchpad
= Smaller and faster than a RAM
= Smaller energy consumption than a cache
= Put frequently used variables on the scratchpad
= Cache controlled by hardware
= Scratchpad controlled by software
Semaphores allocated on scratchpads
No polling




Distribute:d_Messa e Passing (1

X

<>

CPU,

a=1 Shared Mem
signal(sem_a)

<> d

CPU,
wait(sem_a) |——
a=2

print a;

!

sem_a [-—>|l| BUS

——ﬂ




Distribute:d_Messa e Passing (2

X

a:1 <

CPU,(prod)

a=1
signal(sem_a)

CPU, (cons)
wait(sem_a) |——

print a;

!

sem_a |<—| | BUS

a=1 ri i




o Assignment 2

= Given two implementations of the GSM codec
= Shared memory
= Distributed message passing

= Simulate and compare these two approaches
= Energy
= Runtime




Thank you!
Questions?
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